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ABSTRACT

This paper provides an examination of the problem of heteroscedasticity as it relates to
estimating park use, although the results can also be applied to a wide variety of flow problems
involving traffic, people or commodities. The major issue is that estimates of flows obtained
using ordinary least squares, OLS, often yield statistically significant results while still giving
rise to large differences between observed and predicted flows.

The paper presents results which show that for the flow estimation problem of concern,
more accurate use estimates may be obtained by using generalized least squares, GLS, rather
than using OLS. Weights to use in a GLS regression are derived. These are presented in a
covariance matrix which is developed taking in to account the variance to be expected in origin-
destination flows.

It is shown that deriving the correct weights, estimates of variances, to use in a regression
analysis results in an "absolute" test for the structural appropriateness of the regression model.
Tests related to the "absolute" adequacy test are introduced and their use to identify specific
structural problems with a model is illustrated.
INTRODUCTION

Increasingly, more formal methods of estimating attendance at proposed parks and
recreation areas are being used in the planning and justification of such areas. Ordinary least
squares regression (OLS) models are characteristically developed to estimate the relationship
between (B) measures of the use of parks and recreation areas, usually specified as the vo lume of
origin-destination flows for a number of existing sites, and (2) various independent variables
influencing a park's use. These latter variables are usually chosen to reflect the characteristics of
the sites under consideration and to be measures of the size and proximity of populations from
which visitors come (Boyet & Tolley 1966; Ellis & VanDoren 1966; Cheung 1972; Pankey &
Johnston 1969).

While the "relations" established by these kinds of regression are statistically significant,
there is typically an undesirable lack of precision in the prediction of actual origin-destination
visitor flows (attendance figures). Estimates often differ from observed values on which they are
based by several hundred percent" thus there is a problem with the accuracy of estimates (Ellis &
VanDoren 1966; Elsner 1971). The difficulty can be illustrated by examining the origins of
visitors to a provincial park in Saskatchewan (Rowan's Ravine) and employing a simple model to
explain the variation in flows as a function of the distance from the visitors, origins to the park
(see Table 1) and the sizes of the populations at the origins. The total observed 1969 attendance
at this park was 9,828 parties, coming from fifteen different origin areas. However, of the total,
5,868 parties (or about sixty percent) came from a single origin area located fairly close to the
park and containing Regina, the largest population-centre in the region.

Ordinary least squares regression was used to estimate the parameters in Equation 1. The
relationship between various flows from the different origins to Rowan's Ravine was obtained:
(1) log ((V(o,d)+1)/ P(o)) = 2.811 - 0.0241 D(o,d)

WHERE V(o,d) = number of visiting parties plus 1 coming from an origin, o, to a park, p,
P(o) is the population in thousands of o; and
D(o,d) is the distance from o to the destination, d, in road miles.



The constant 1.0 was added to visit numbers to avoid the problem created if computation
involved taking the logarithm of zero. Logarithms used were 'base 10' (subsequently natural,
base e, logarithms are specified as “ln”).

Equation 1 provided a reasonable explanation of the variation in the dependent variable.
The R2 for the regression is 0.77. The regression coefficients are highly significant according to
the usual F-test. Also, the standard error of the regression coefficient of D(o,d) is only 0.00783.
Nevertheless, the explanation of the use of the park is not particularly good, as can be seen from
Table 1. Even though the fitting was done using the data shown, the estimate of a total of 5,887
visiting parties from all origins is nearly 4,000 below the actual total visitor flow.

In using OLS regression to estimate relationship between visits and distance, each
observation point was treated as if it were as important as any other. In the example, the use of
OLS regression treats the observation for origin unit 4 (which contributed 60 percent of the
observed total use) as the equal of the observation for origin unit 13 (which contributed
approximately O.3 percent of the total use) or the same as observation 16 which involved no
visits and therefore contributed nothing to total use.
While errors in prediction are partly due to omission of causal factors and 'measurement errors'
(Pankey & Johnston 1969), a further and major cause of poor predictions using the model is
clearly the heteroscedasticity among the observations, and this is not properly dealt with when
estimating the parameters. The preceding statement is made without applying a test for
heteroscedasticity (Goldfield & Quandt 1965; Goodchild TN 35) because, in the following, the
nature of the variance in observations is derived.

TABLE 1: STATISTICS PERTAINING TO OBSERVED AND ESTIMATED DAY VISITS
TO ROWAN'S RAVINE PROVINCIAL PARK, SASKATCHEWAN

Percent Error
100*(Obsd.-Est.)/Est.Obser-

vation
Unit

Distance
to Park
in Miles

Popul-
ation

Observed
Visits
Vehicles

Estimated
Visits Un-
Weighted
Regression

Estimated
Visits
Weighted
Regression

Weighted
Regression

Weighted
Regression

1 133 32,489 36 11 22 227 64
2 126 51,923 0 29 55 -100 -100
3 104 17,813 63 34 66 85 -5
4 61 132,432 5,868 2,890 5,731 103 2
5 34 11,594 720 1,133 2,315 -36 -69
6 14 B,632 1,980 483 1,011 310 96
7 21 3,871 378 778 1,614 -51 -77
8 67 2,829 36 43 86 -16 -58
9 110 36,889 99 51 98 94 1
10 107 3,271 0 4 9 -100 -100
11 109 6,181 18 8 16 125 13
12 40 4,237 414 296 601 40 -31
13 139 21,104 27 5 10 440 170
14 84 16,284 63 98 190 -36 -67
15 154 117,405 126 21 38 500 232
16 117 4,456 0 3 7 -100 -100
17 129 2,729 0 0 1 -100 -100

Total 9,828 5,887 11,870



A FIRST STEP TOWARD 'PROPER' ESTIMATION: DERIVATION OF A COVARIANCE
MATRIX FOR THE OBSERVED VISITOR FLOWS
When the parameters of a model are estimated using generalized least squares (GLS), it is
necessary to know the covariance matrix of the observations (matrix with variances of
observations on the diagonal and correlations between them off diagonal). Subsequently, a
covariance matrix for observed visitor flow, ∑v() is derived which is critical in obtaining the
covariance matrix of log/ln transformed observation, ∑L. Because regression is for Equation 1
the covariance matrix for ln((V(o,d)+1)/ P(o)) is eventually used in a regression analysis. To
facilitate the discussion involved in deriving∑L the following notations and definitions are used:
v(o,d,t,g)=observed number of vehicles, with parties in collectivity g, going from origin o to
destination d on day t;

WHERE the collectivity g is a set of parties which tend to have similar behaviour in terms of
their probability of participating in a given package of recreation activities at destination d on
a day t with its given weather, park crowding and traffic, conditions, etc.

vp(o,d,t,g)=the predicted value of v(o,d,t,g), 'an estimate’ of it,
p(o,d,t,g)=the probability that a party in collectivity g would go to d from o on day t,
V(o,d,t,g)=the random variable that generates the observed values v(o,d,t,g),
E(V(o,d,t,g))=expected value of V(o,d,t,g)
VAR(V(o,t,d,g))=variance of V(o,d,t,g).
Additionally, when some subscripts are removed from v(o,d,t,g), the resulting expression implies
a sum over the given subscript(s). The number of parties going from origin o to a destination d
on day t is v(o,d,t) = ∑gv(o,d,t,g); the number over all days for all g is v(o,d) = ∑t∑gv(o,d,t,g);
and the total attendance at the park is v(d) ∑o∑t∑gv(o,d,t,g) = ∑ov(o,d).

The most usual assumption in regression analysis (the OLS or homoscedasticity
assumption) is that for flows v( ), ∑v() is a diagonal matrix of the form:

1 0 ∙∙∙ 0 0
 ׁ

∑v()=σ2 : 1 :
0 0 0 0
0 0 ∙∙∙ 0 1

WHEREσ2 is the variance that applies to all observations, v( ).
But, now consider that visitor flows from o to d on day t for group g depend on N(o,g), the

number of people in g available to participate, and p(o,d,t,g), their probability of participating.
The very nature of the definition of V(o,d,t,g) in terms of N(o,g) and p(o,d,t,g) implies that
V(o,d,t,g) is a binomial random variable with mean and variance as follows:
(4) E(V(o,d,t,g)) = N(o,g)p(o,d,t,g)
(5) VAR(v(o,d,t,g)) = N(o,g)p(o,d,t,g)(1-p(o,t,g,d))
(6) and, if p(o,d,t,g) is small, Equation 4 holds so that Equations 5 and 6 follow.
(7) VAR(V(o,d,t,g)) ≈N(o,g)p(o,d,t,g) = E(V(o,d,t,g))
(8) E(V(o,d,t)) ≈∑g VAR(V(o,d,t,g))
(9) VAR(V(o,d,t) ≈∑g VAR(V(o,d,t,g)) = ∑E(V(o,d,t,g))= E(V(o,d,t))

a. One should note that v(o,d,t) can be observed and it is an estimate of E(V(o,d,t));
an observation is an estimate of its expected value (if the expected value exists).
So, from Equation 5 one can see that it is possible to obtain estimates of the
variance of V(o,d,t).

b. Similarly, for total use from an origin to destination, one obtains:



(10) VAR (V(o,d)) = ∑g VAR(V(o,d,t) ≈∑g E(V(o,d,t)) = E(V(o,d))
Thus the variances in V(o,d,t) and V(o,d) are approximately proportional to their

respective expected values, meaning that either observations or predicted values
can be used as estimates of the variance V(o,d) (see Equation 4). The merits of using
observations to define weights to obtain estimates that can then be employed as variance
estimates in a second cycle of estimation is not discussed.

Now it will be the exception, rather than the rule, that a change in vehicle flow to one site
will be correlated with change in visitor flows to other sites. This is because a trip by a single
visiting party of a given type on a given day from a given origin to one site or another is not
expected to influence the decision of other parties in other vehicles. Obviously, parties may make
decisions based on what they think other parties will do, but this is not the issue.

Assuming that the fluctuations in daily flows to one origin-destination pair for one type of
user are not correlated with similar flows to another origin-destination pair, it follows that the
estimated covariance matrices of v(o,d) for n flows can be written as follows (with the matrix for
v(o,d,t) or other observations being written in a similar way):

v(o1,d1) 0 ∙∙∙ 0 0
 ׁ

(8)∑v()=σ2 : v(ok,dk) :
0 0 0 0
0 0 ∙∙∙ 0 v(on,dn)

This matrix is the appropriate covariance matrix of observations if non-linear regression were
being used with the v(o,d) as the dependent variable (see TN 35).
OBTAINING MODEL PARAMETERS USING LINEAR REGRESSION

For the estimates of the parameters to be efficient, certain distributional properties of the
error term e(o,d) must be assumed. The form of Equation 1 suggests that the ' fluctuations, in the
random variable V(o,d) define the variance of the error term e(o,d). It is complicated to give an
exact relationship that shows how the fluctuations in V(o,d) define fluctuations in e(o,d).
However, a Taylor series expansion of ln((V(o,d)+ΔV)/P(o)) around E(V(o,d,)) results in
Equation 1 taking the form shown in Equation 9 which, yields Equation 10.
(9) (9) log f |E(V,o,d)+ (∂f/∂V ΔV≈a + bD(o,d) + e(o,d)

WHERE f = ln ((V(o,d)+1)/P(o)) and the derivative is evaluated at E(V(o,d))
(10) ln f + ΔV /(E(V(o,d)) + 1) ≈a + bD(o,d)+e(o,d)

a. Because the random fluctuations on the two sides of Equation 10 must be
approximately equal:

(11) ΔV/(E(V(o,d))+1) ≈e(o,d)
a. Because the series expansion is about E(V(o,d)), by definitionΔV is the

fluctuation of V(o,d) around its expected value, so its variance is the same as the
variance of V(o,d). What is more, the variance of V(o,d) is VAR(V(o,d)) which, as
was shown earlier, is approximated by E(V(o,d)). So, by well known statistical
theorems:

(12) VAR(e(o,d)) ≈E(V(o,d))/(E(V(o,d)) + 1)2

Given that the v(o,d)'s are uncorrelated, an appropriate covariance matrix for GLS
estimation of the parameters in Equation 1, ∑L, is one that is defined using variance estimates
given by Equation 12 and with zeros off the diagonal.

It should be noted that the preceding discussion has implied that all use of a park during a
given period is monitored. Usually, however, the total traffic flow (or the components of that



flow) to a site from an origin is not observed but estimated. The dependent variable in a
regression thus will likely be a function of vv(o,d), a weighted sum of observations. Yet the fact
that in a particular regression vv(o,d) is the dependent variable presents no particular problem.
One may simply use the variance in the vv(o,d)'s in a GLS regression by entering them in place
of E(V(o,d)) in Equation 12. The weights w(o,d,t) used to multiply the flows v(o,d,t) to get
vv(o,d) can be used to obtain the variance in vv(o,d). Using both the results presented in
Equation 8 and the well known statistical theorems that deal with variance, it follows that if V is
used as a notation to indicate survey observations with time in hours, days or some appropriate
unit and if vv(o,d) = Σw (o,d,t) v(o,d,t) where the sum is over t, then:
(13) an estimate of variance in vv(o,d) = Σw2 (o,d,t)vv(o,d,t) summed over all sample times

Alternatively, if a survey design allowing variances in origin-destination visitor flow
estimates to be calculated was used, the estimates obtained could be employed in defining the
covariance matrix.
AN APPLICATION

The preceding discussion implies that it is appropriate (1) to accept the heteroscedasticity
of variances in flows when using the ,'logarithmic additive' model, and (2) in determining
regression coefficients, to give larger weights to origins contributing large flows of visitors than
to those that contribute small visitor flows to the total use of an area.

For reasons cited earlier, the covariance matrix of the observations used in making GLS
estimates of the parameters of Equation 1 is essentially given in Equation 12. When the
parameters in Equation 14 were estimated using GLS for the same set of data as used to derive
Equation B, the following equation was obtained:
(14) log (V(o,d)+1/P(o)) = 3.13701 – 0.260 D(o,d)

The predicted numbers of visits from each origin to Rowan's Ravine and the percent of
error between predictions and observations are presented in Table 1 as they were for the OLS
regression. The R2 attained was 0.87, which was up from 0.77. As in the OLS regression, the
regression coefficients are highly significant. And, in this case, the standard error of the
regression coefficient of D(o,d) was 0.00246. Comparing Equations 15 and B, one sees that the
coefficient of D(o,d) is relatively constant (at 0.02413 for OLS and 0.00246 for GLS). These
coefficients also have small standard errors (O.00340 and 0.00246) in comparison to their actual
values.

An obvious difference between the results of the two regressions is seen in Table B. The
residuals obtained using GLS regression range from 1 to 1,595, as compared to the residuals of
the unweighted regression analysis which range from 1 to 2,978. But, because of the bias
involved when antilogarithms of predicted values are taken to obtain estimates of the individual
flows, it is not clear to what extent the larger residuals for the OLS regression are due to model
specification error, to measurement error and to "pure" logarithmic transformation bias.

One should recognize that GLS regression analysis resulted in an increase of percent error
for some flows, such as those from observation units 5, 7, and 12. However, all of these flows
are small compared to the flow from observation unit 4 to Rowan's Ravine. As one can see from
Table 1 the average the percent error in the individual flows was greatly reduced by using
weighted (GLS) regression. Had a weighted average been used to compute average error, GLS
results would have appeared even better. Observation 4, which contributed about sixty percent of
the total visitor flow, had its error reduced from 103 percent to two percent. Regardless, whether
a percent RMS error measure or variances of parameters is considered, the GLS model is
superior to the OLS model. (See Table 2.)



AN 'ABSOLUTE' MEASURE OF MODEL APPROPRIATENESS
From a critical perspective, the model described in this paper has been assumed to be

structurally sound. The wary reader may be disturbed by this assumption. Actually, the
theoretical error distributions developed can be used to see if the observed residuals are
distributed as they should be if the model is structurally appropriate for the data. The results
already presented suggest that one consider:

χ2
M-N ≈∑(residual)2/E(V(o,d)+1) over all o,d flows

WHERE M number of flows observed and N number of parameters estimated.
For evaluating individual flows:

χ2
M-N ≈(residual)2/E(V(o,d)+1)

The rationale for Equations 15 and 16 is that for the distribution being considered, a
residual squared divided by its variance is approximately the square of a normal zero-one
variable. This is by definition a chi-square with one degree of freedom. It is recognized that the
residuals are not orthogonal to each other since degrees of freedom are lost when parameters are
estimated. So, in Equation 15, degrees of freedom M-N are suggested with N being the number
of regression parameters. The authors believe that using observations as GLS weights does not
result in the loss of further degrees of freedom.

Using Equation 16, it is possible to see that, over all, there are structural problems with
the model. The largeχ2 values in Table 3 actually make it clear that the model does not do as
well as it should in explaining the observed flows. Theχ2

M-N having a highly sign value, is
"absolute" proof that the structure of the model used is not totally adequate to explain the
observed flows so its value is an "absolute" criterion for the structural adequacy of a model.
Obviously, several models could be accepted as structurally adequate and, if this is the case, then
it is possible that the methodology of Smith (1975) should be employed to select one model as
the best.

TABLE 2: PERCENT ROOT MEAN SQUARE (RMS) ERROR
AND RELATED STATISTICS OF OLS AND GLS ESTIMATES

Error Measure OLS GLS
Improvement Factor
GLS/OLS

% RMSE Error* 200.00 95.91 0.48
S.D.of b** O.00783 0.00567 0.72
Average - - 0.60

* % RMS Error - (B/17 Σ(% error of observation i)2)1/2 WHERE percent error of observation i =observed
visits - estimated visits estimated visits of observation

** It is recognized that estimates of the Standard Division in the regression coefficient, S.D. of b, is biased when
OLS is used with heteroscedastic data. One can of course use the data provided to calculate an unbiased OLS
estimate of the S.D. of b but it is not relevant to the problem under consideration. This is because the concern
is with comparing a procedure accepting the OLS model with a GLS result.

As well as recognizing that an overall structural adequacy test can be made, it should be
noted that the very large χ2 values associated with observation units 5 and 7 certainly reflect
problems with the model used because those observed for the origin-destination flows have
essentially zero probability of occurring. However, careful examination of how origin areas 5
and 7 were defined and how the distances from these areas to Rowan's Ravine were measured
suggests that the poor agreement between predictions and observations is a result of D(o,d) being
given a value that is smaller than the value it should have. Similar considerations allow one to
understand other significant residuals. A table such as Table 3 has good information from which
to improve a model and such a table should be computed as a routine part of analysis to



determine if a model is structurally adequate.
CONCLUSION

This paper has dealt with obtaining efficient estimates of the parameters in an equation
that defines a relationship between visitor flows and other variables. The rather obvious
conclusion that has been reached is that, in regression analysis of flows using an equation such as
Equation B, greater weights should be given to the more accurate observations of visitor flows so
that efficient flow and parameter estimates can be obtained.

A practical consequence of having more efficient estimates is that research costs can be
reduced or planning accuracy improved without increasing existing data collection costs. The
fact that, on the average, accuracy improvement was sixty percent (see Table 2) means that to
achieve the GLS level of accuracy using OLS, about three times as much data, (1/0.60)2 =1.3,
would be required. Since using GLS regression costs no more (or little more) than using OLS,
using it makes sense.

Finally, regarding point 3, it is admitted that in deriving the covariance matrices for v(o,d)
and v(o,d,t), a number of assumptions were important in reaching the expressions derived. The
validity of these assumptions about the behaviour of recreators must be checked. The specific
concern must be whether probabilities that are assumed to be small are small. However, one
should not make too much of this. As noted for point 2, small or even moderate errors (30 or 40
percent) in the variance elements of covariance matrix - errors due to poor approximations - have
less effect on the parameter values estimated using the covariance matrix than one might expect.

In conclusion, an example helps illustrate the importance of having both efficient
estimates and an absolute measure of a model,' structural adequacy. The work of Ellis and
VanDoren cited early in this paper compares the 'goodness' of a gravity model and a systems
model to explain trip distribution in Michigan. They show that a systems model is 30 to 40
percent 'more accurate' than a gravity model. But they used OLS in estimating the parameters of
the gravity model. If they had used GLS, they may well have achieved about 60 percent
improvement in accuracy and it would have been concluded that both models were equally good
or that the gravity model was slightly better.

It should also be noted that if a significant χ2 value of 'absolute' fit were found for one or
both Michigan models, one would be forced to face the fact that neither the system or gravity
model had done that well in explaining behaviour. Certainly there is need to be more concerned
with adequacy of model structure before comparing R2 's or related measures to show that a
model is better.



TABLE 3 COMPARISON OF RESIDUALS, OBSERVED VALUES AND χ2
1*

Origin
area

Pred-
icted
Flow

Residual
(observed-
predicted)

Residual
Squared

Approximate
χ2

1 22 14 196 .39
3 66 -3 9 .006
4 5,731 137 18,769 .14
5 2,315 -1,595 2,544,025 49.11
6 1,001 969 938,961 41.50
7 1,614 -1,236 1,527,696 42.30
8 86 -50 2,500 1.30
9 98 1 1 .0004
11 16 2 4 .011
12 601 -187 34,969 2.60
13 10 17 289 1.32
14 190 -127 16,129 3.80
15 38 88 7,744 9.18
* The following give one an idea of the probability of χ2

1 values occurring:
P(χ2

1 > 3.84) = .05 P(χ2
1 < .0039) = .05

P(χ2
1 < .00063) = .02 P(χ2

1 < .00016) = .01


